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Abstract

Vaginal cytology is a diagnostic tool for evaluating estrous cycle stages and reproductive health in female dogs and cats. It

involves microscopic examination of vaginal epithelial cells, but subjective interpretation can lead to inconsistencies. This

study explores artificial intelligence (AI), specifically deep learning, to enhance accuracy. A total of 1,096 vaginal smear

samples were collected, stained, digitized, and analyzed using AI. Several pre-trained convolutional neural networks (CNNs),

including MobileNetV2, ResNet152V2, EfficientNetV2L, Xception, VGG-16, InceptionV3, NasNetLarge, InceptionResNetV2,

DenseNet201, and ConvNeXtSmall, were evaluated. The Xception model achieved the highest accuracy at 97.65%. These

findings demonstrate AI’s potential to reduce subjectivity, improve diagnostic consistency, and advance reproductive health

assessments in veterinary medicine.
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Abstract
Vaginal cytology is a diagnostic tool for evaluating estrous cycle stages and reproductive health
in female dogs and cats. It involves microscopic examination of vaginal epithelial cells, but sub‐
jective interpretation can lead to inconsistencies. This study explores artificial intelligence (AI),
specifically deep learning, to enhance accuracy. A total of 1,096 vaginal smear samples were col‐
lected, stained, digitized, and analyzed using AI. Several pre‐trained convolutional neural networks
(CNNs), including MobileNetV2, ResNet152V2, EfficientNetV2L, Xception, VGG‐16, InceptionV3,
NasNetLarge, InceptionResNetV2, DenseNet201, and ConvNeXtSmall, were evaluated. The Xcep‐
tion model achieved the highest accuracy at 97.65%. These findings demonstrate AI’s potential to
reduce subjectivity, improve diagnostic consistency, and advance reproductive health assessments
in veterinary medicine.
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1 INTRODUCTION4

Examining vaginal cells under the microscope—commonly referred to5

as vaginal cytology—offers a straightforward yet valuable tool for eval‐6

uating disorders of the reproductive and urinary tracts in both bitches7

and queens (Kustritz, 2020). Used alongside a thorough clinical history,8

physical examination, and other diagnostic procedures, this method fa‐9

cilitates accurate diagnoses and tailored treatments. Because female10

dogs experience a prolonged heat phase and their behavioral signs do11

not always align with the precise timing of ovulation, determining the12

best day for breeding can be challenging (Linde & Karlsson, 1984). Con‐13

sequently, if mating occurs at the wrong time, one might mistakenly14

suspect fertility complications even when there are none (Grundy, Feld‐15

man, & Davidson, 2002; Moxon, Copley, & England, 2010). By assessing16

vaginal epithelial cells in conjunction with other diagnostic measures,17

veterinarians can more precisely identify ovulation and optimize the18

timing for mating. Additionally, vaginal cytology can help ascertain the19

sexual cycle stage, given in Figure 1, detect irregularities in the cycle20

Abbreviations: AI, artificial intelligence; AUC, area under the curve; CNN, convo‐
lutional neural networks; ROC AUC, area under the curve of receiver operating
characteristic

or lack of ovulation, localize abnormal bleeding or discharge, and diag‐21

nose issues such as inflammation (e.g., metritis and pyometra), tumors,22

or vaginal hyperplasia (Kaymaz, Rişvanlı, & Köker, 2019).23

Vaginal cytology relies on categorizing epithelial cells according to24

their morphology to determine the reproductive cycle phase (Johnston,25

Kustritz, & Olson, 2001). Four primary types of epithelial cells are distin‐26

guished. Parabasal cells, which lie close to the basement membrane, are27

small and round, exhibit a prominent nucleus, and have a narrow band of28

cytoplasm. These cells are consistently found in canine vaginal samples.29

Positioned above the parabasal layer, intermediate cells appear slightly30

bigger, with a larger proportion of cytoplasm relative to the nucleus.31

Collectively, parabasal and intermediate cells are sometimes grouped32

under the label “non‐cornified.” As estrogen levels rise, parabasal cells33

undergo division, giving rise to superficial cells—often called superficial34

intermediate cells—that are large and irregularly shaped, with abun‐35

dant cytoplasm and a relatively small nucleus. Some superficial cells36

lack visible nuclei after staining; these are referred to as non‐nucleated37

squamous cells. Both superficial cells and non‐nucleated squamous38

cells are frequently called “cornified.” Other elements typically observed39

in vaginal cytology include polymorphonuclear leukocytes (PMNs or40

neutrophils), red blood cells (RBCs), and bacteria (Kustritz, 2020).41

During anestrus in bitches, the vaginal lining consists mostly of a42

thin layer of parabasal and intermediate cells (Post, 1985). As proestrus43

Journal 2023;00:1–14 wileyonlinelibrary.com/journal/ © 2023 Copyright Holder Name 1
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F I GUR E 1 Estrus cycle

progresses and transitions into estrus, the tissue thickens and accu‐44

mulates more layers to prepare for mating. Early smears taken during45

proestrus often show predominantly intermediate cells with relatively46

few parabasal or keratinized cells, and red blood cells appear in substan‐47

tial numbers. As estrus approaches, however, RBCs typically diminish.48

In estrus itself, the proportion of keratinized cells in the smear climbs,49

peaking around ovulation as progesterone levels become sufficient for50

ovulation. By then, both red blood cells and leukocytes generally dis‐51

appear from the sample, and the smear appears cleaner compared to52

proestrus or metestrus. When metestrus begins, leukocytes return in53

greater numbers, and there is a notable increase in parabasal and in‐54

termediate cells once again (Moxon et al., 2010). In cats, parabasal,55

intermediate, nucleated superficial and non‐nucleated superficial cells56

are observed in vaginal cytology. Increased estradiol levels in proestrus57

cause vaginal cornification, leading to morphologic changes in cytologic58

cells. In cats in proestrus, intermediate cells are mostly present, while59

parabasal, neutrophil and cornified cells are present to a lesser extent.60

In cats, unlike dogs, the peak of vaginal cornification occurs simultane‐61

ously with the plasma estradiol peak. In cats in estrus, superficial cells62

are most abundant, followed by cornified, intermediate, neutrophil and63

parabasal cells in decreasing order. In diestrus, neutrophils are observed64

with themajority of parabasal and intermediate cells, while cornified and65

superficial cells are observed in very small proportions. In anoestrus, in‐66

termediate cells are observed at high rates, while parabasal, superficial67

and neutrophils are observed at low rates (Johnston et al., 2001; Kaymaz68

et al., 2019). With the advancement of technology, various alternative69

diagnostic methods are being developed. In vaginal cytology, subjective70

evaluation of the samples under the microscope may cause differences71

in interpretation. In order to prevent these subjective evaluations and72

to make more objective and accurate determinations, computer‐aided73

programs and software are used and continue to be developed. Artifi‐74

cial intelligence, which is a current field of study, is used in different75

techniques and fields (Matias et al., 2021). By uploading and recogniz‐76

ing images, it has been used in the interpretation of colposcopy, cervical77

cancers and cervical cytology in humans (Fu et al., 2022; Holmström78

et al., 2021; G. Liu et al., 2022; Tareef et al., 2017), determining the79

estrous cycle and stages of rodents (Çeçen et al., 2024; Wolcott et al.,80

2022), and determining the cycle stage with vaginoscopic images (Rajan,81

Mooloor Harshan, & Gopinathan, 2024). In this study, it was aimed to82

help more objective evaluation and diagnosis by determining the cy‐83

tology images of different cycle stages of cats and dogs using artificial84

intelligence.85

2 LITERATURE REVIEW86

When studies on determining the stage of the estrous cycle of ani‐87

mals with cytological images using deep learningmethods are examined,88

it is possible to say that these methods are much faster than manual89

methods. In their 2022 review, Hennessey et al. highlight that the appli‐90

cation of artificial intelligence (AI) in veterinary medicine remains in its91

early stages, with fewer than forty academic studies published to date.92

This emerging approach primarily utilizes machine learning techniques93

applied to large image datasets for diagnostic purposes. Moreover, fur‐94

ther advancements in AI have the potential to enhance areas such as95

radiology services, workflow optimization, quality control, and image96

interpretation (Hennessey, DiFazio, Hennessey, & Cassel, 2022).97

Calderón and his team propose to automatically identify six cell types98

in vaginal cytology with 91.6% accuracy to determine the estrous cy‐99

cle of dogs with a Faster R‐CNN‐based system. The proposed system100

reduces the analysis time from approximately 1 hour to a few seconds,101

speeding up the diagnostic process and making it more efficient. This102

innovative approach aims to increase accuracy by reducing subjective103

interpretations in diagnoses and to prevent economic losses (Calderón,104

Carrillo, Nakano, Acevedo, & Hernández, 2020).105

The study conducted by Çeçen and his teammates examines deep106

learning‐based YOLOv5 models to classify the estrous cycle using uter‐107

ine tissue images taken from female rats. The YOLOv5mmodel showed108

the highest performance with 98.3% accuracy and 98% F1 score. The109

results reveal that the proposed model can support expert pathologists110

in histological analysis (Çeçen et al., 2024).111

In their study, Lodkaew and his colleagues developed a system called112

CowXNet to automatically detect estrus behavior in cows on farms.113

CowXNet used YOLOv4 and deep learning methods to analyze camera114

images and classified the movements of cows with 83% accuracy. This115

system aims to replace costly electronic devices and enable farmers to116
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detect estrus more efficiently and effectively (Lodkaew, Pasupa, & Loo,117

2023).118

In the PhD thesis study conducted by İbrahim Arıkan, he aims to119

determine the estrus period in farm animals by detecting mounting be‐120

havior with deep learning methods. While the ResNet model detected121

mounting behavior with 99% accuracy, XAI (Explainable Artificial Intel‐122

ligence) techniques such as Grad‐CAM and Gradient Inputs were used123

to explain the focal points of the models in the decision‐making pro‐124

cess (the udder and back regions of the cows). The explainability of the125

models was evaluated with ”accuracy,” ”maximum sensitivity,” and ”com‐126

plexity” metrics, providing reliable and understandable results (Arıkan,127

2024).128

Research conducted by Onishi and colleagues points out that as‐129

sessing the estrous cycle in adult female mammals is a pivotal step130

in confirming both the safety and the effectiveness of potential ther‐131

apeutics. Traditional pathology methods, which often rely on expert132

assessment, can be time‐intensive and prone to variability across dif‐133

ferent observers. In contrast, deep learning‐based image analysis offers134

significant benefits in streamlining these evaluations. Their findings in‐135

dicate that two AI‐driven models designed to identify estrous cycle136

phases using cervical and vaginal tissue images achieve accuracies com‐137

parable to those of seasoned pathologists, suggesting that this digital138

approach could expedite the drug research and development pipeline139

(Onishi et al., 2022).140

In Lee’s study, it is emphasized that advancements in artificial intel‐141

ligence are leading to more accurate outcomes in image classification142

tasks. The researchers conducted a comparative analysis of various ma‐143

chine learning algorithms, including support vector machines (SVM),144

alongside more advanced deep learning techniques such as convolu‐145

tional neural networks (CNNs) with varying parameters. These meth‐146

ods were applied to address the classic “Cats vs. Dogs” classification147

problem (Lee, 2021).148

Haghofer and his colleagues introduce a workflow that integrates149

artificial intelligence (AI) and image processing techniques to classify150

lymphoma based on nuclear size—categorized as small, medium, or151

large. Their study highlights the effectiveness of modular segmenta‐152

tion models like Stardist for nuclear segmentation, as well as a Unet++153

model trained on labeled nuclear cells from canine lymphoma histo‐154

logical images. Consequently, the proposed workflow achieves classi‐155

fication accuracies of 92% for canine lymphoma data and 84.21% for156

feline lymphoma data. This system assists pathologists in distinguishing157

lymphoma subtypes by analyzing nuclear size (Haghofer et al., 2023).158

The study conducted by Rajan and his co‐researchers presents a159

contemporary method to determine the phases of the estrous cycle in160

female dogs. Features were extracted with models of InceptionV3 and161

ResNet152 and they were optimized with binary gray wolf optimiza‐162

tion (BGWO) and classified with extreme gradient boosting (XGBoost)163

algorithm. The results show that the ResNet152 model performed best164

with the XGBoost producing 90.37% accuracy in average (Rajan et al.,165

2024).166

The team of Wolcott focuses on that the deep learning‐based Es‐167

trousNet algorithm was used to classify the estrous stage, and this168

method achieved expert‐level accuracy. EstrousNet uses the time di‐169

mension of the hormone cycle to highlight misclassifications and flag170

anestrus stages (e.g., pseudopregnancy), allowing researchers to quickly171

assess endocrine status during rodent studies (Wolcott et al., 2022). Pu172

and his colleagues in their study, an automatic EfficientNet model pro‐173

posed with deep learning techniques to recognize the estrous cycle174

of female rats. This model, which provides higher accuracy and effi‐175

ciency compared to traditional methods, optimizes its performance by176

adjusting model, layer and input properties, which are depth, width and177

resolution. The model outcome has high accuracy on predicting stages178

of the rat estrous cycle, thus increasing the efficiency of experiments179

and reducing human errors (Pu, Liu, Zhou, & Xu, 2024).180

Numerous studies have focused on using deep learning models to181

analyze the estrus cycle, as highlighted in this section. However, this182

study is unique in its use of multiple models and a comparative experi‐183

mental approach, which has not been explored in previous research. By184

introducing an original dataset and applying this innovative methodol‐185

ogy, the study contributes significantly to the literature, offering new186

insights and advancing the field of estrus cycle analysis. Furthermore,187

the comparison of differentmodels enhances our understanding of their188

relative strengths and potential applications, enriching the current body189

of knowledge in this area.190

3 METHODOLOGY191

3.1 Dataset192

A total of 1096 smear images were collected from dogs and cats with193

healthy genital tract and cycle. Samples were obtained from animals in194

different phases of the estrous cycle. All samples were collected using195

a sterile cotton swab moistened with isotonic serum (Pérez, Rodríguez,196

Dorado, & Hidalgo, 2005). The cotton swab collected cells from the197

caudodorsal surface of the vagina (Aydin, Sur, Ozaydin, & Dinc, 2011).198

Swabs were taken by rolling the swab from the dorsal wall of the vagina,199

removed and spread on a glass slide (Davidson, 2015). The smears200

were stained using Diff‐Quick staining kit (Davidson, 2015; Reckers,201

Klopfleisch, Belik, & Arlt, 2022). The smears were taken using a camera‐202

integrated microscope (Olympus CX23, LCmicro, Olympus Europa SE &203

CO. KG, Hamburg, Germany) and digitized, which can be seen in Figure204

2.205

In the dataset, there are four phases of the estrous cycle of cats and206

dogs: Anoestrus, Diestrus, Estrus and Proestrus, in Figure 3. In this study,207

an image processing systemwas developed and it was aimed to estimate208

the phase of the estrous cycle of the relevant animal based on an image209

given to the system.210
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F I GUR E 2 Collection of smear images using a camera‐assisted microscope.

F I GUR E 3 Sample images from estrus stages as classes

3.2 Model Structure211

In this experiment, a model is built for the given goal using a pre‐212

trained model as its foundation. The selected base models include Mo‐213

bileNetV2, ResNet‐152 V2, EfficientNetV2L, Xception, VGG‐16, Incep‐214

tionV3, NasNet, InceptionResNetV2, DenseNet201, and ConvNextS‐215

mall.216

MobileNets are specifically designed for robust real‐time perfor‐217

mance while minimizing accuracy loss (A. G. Howard et al., 2017;218

A. Howard, Zhmoginov, Chen, Sandler, & Zhu, 2018).219

ResNets employ deep architectures with residual mappings to gener‐220

ate reliable predictions (He, Zhang, Ren, & Sun, 2015, 2016).221

EfficientNets, derived fromMobileNets, achieve greater efficiency by222

systematically scaling properties such as model depth, layer width etc.223

(Tan & Le, 2019, 2021).224

The Xception model builds upon the Inception model but pushes its225

design to extremes, earning the name “Extreme Inception” (abbreviated226

as Xception) (Chollet, 2016).227

VGG models, named after the Visual Geometry Group, feature deep228

architectures with small convolutional layers to address challenges229

posed by high model depth (Simonyan & Zisserman, 2014).230

Inceptionmodels employ a unique layer structure consisting of incep‐231

tion blocks, which enable parallel computations followed by concatena‐232

tion (Christian, Vincent, Sergey, Jonathon, & Zbigniew, 2015).233
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NasNet (Neural Architecture Search Network) is a model designed234

to discover the optimal neural network architecture for a specific task.235

It identifies and optimizes the best‐performing model by initially evalu‐236

ating candidates on a smaller subset of the dataset (Zoph, Vasudevan,237

Shlens, & Le, 2018).238

InceptionResNet models combine the strengths of Inception’s ar‐239

chitecture with ResNet’s residual mappings, often achieving superior240

results compared to either approach individually (Szegedy, Ioffe, Van‐241

houcke, & Alemi, 2017).242

DenseNetmodels use densely connected blocks of layers to enhance243

feature propagation and achieve high accuracy predictions (Huang, Liu,244

Van Der Maaten, & Weinberger, 2017).245

ConvNext models were developed to modernize convolutional neu‐246

ral networks in response to the rise of vision transformers. Designed as247

next‐generation CNNs, ConvNext models come in various sizes, with248

larger sizes offering higher accuracy at the cost of reduced efficiency.249

ConvNextSmall was selected for this experiment to balance accuracy250

and time performance (Z. Liu et al., 2022).251

The experiment is carried out for each pre‐trained model. In addition252

to retrieving and utilizing the pre‐trained models, several crucial steps253

are implemented throughout the experiment. The following outlines the254

experimental process step by step.255

The following algorithm describes the key steps involved in the256

process presented in Algoirthm 1.257

1. The dataset is loaded from Google Drive and rescaled to 224x224258

size..259

2. The dataset of 1,096 images was split into three parts for distinct260

functions: 70% was designated for training the model, 20% for vali‐261

dating the model during the training process, and the final 10% was262

reserved as a test set to assess the model’s overall performance.263

3. A data augmentation layer is implemented to synthetically expand264

the dataset.By utilizing techniques like flipping, rotation, cropping,265

and scaling the original collection of 1,096 images can be expanded266

more than tenfold, greatly increasing the variety of the training267

dataset.268

4. The dataset images are represented as 1D arrays of RGBpixel values,269

each ranging from 0 to 255. To facilitate faster and more efficient270

computations, these values are normalized to either the [0,1] or271

[‐1,1] range. The choice of the target range depends on the prepro‐272

cessing requirements of the specific pre‐trained model being used.273

As a result, an appropriate preprocessing layer is added to ensure274

compatibility with the model’s input format.275

5. In this study, transfer learning is utilized by incorporating pre‐276

trained base models into the program through the TensorFlow277

library, enabling the application to leverage existing knowledge for278

enhanced performance.279

6. Neural network architectures are made up of multiple layers. During280

the training phase, certain layers are kept inactive, or ”frozen,” to pre‐281

serve their pre‐trained weights, while the other layers are adjusted.282

This strategy, commonly called the freeze‐out fine‐tuning method,283

Algorithm 1 Experimental program
Fetch the images as dataset
Divide the data into training, validation, and test sets
with approximate proportions of 70%, 20%, and 10%
respectively.

baseModel← get the pretrained model

model← define a model

model.layers← empty layer list

model.layers.insert(inputLayer)
model.layers.insert(dataAugmentationLayer)
model.layers.insert(preprocessLayer)
model.layers.insert(baseModel)
model.layers.insert(globalAveragePoolingLayer)
model.layers.insert(predictionLayer)

baseModel.trainable← True
fineTuneAt ← freeazeout last one third of

layers in the model
for k ∈ {0, . . . , fineTuneAt} do

baseModel.layers[k].trainable← False
end for
metrics← [accuracy, loss, precision,

recall, f1Score, roc]
model.compile(metrics)
Fit the model
Plot the learning curves
Produce results of model on test dataset

was utilized in the experiment by immobilizing approximately the284

first third of the model’s layers. This approach facilitates concen‐285

trated training on the active layers while taking advantage of the286

existing knowledge within the frozen layers.287

7. A pooling layer has been implemented in the model. This layer288

utilizes the global average pooling method, which computes the av‐289

erage value of each feature map. This approach effectively reduces290

the dimensionality of the data while retaining its essential features.291

8. A prediction layer is integrated into the architecture to generate the292

model’s final outputs. To assess the likelihood of input images be‐293

longing to each class, the softmax activation function is employed.294

Softmax is particularly suitable for this task as it transforms the out‐295

put values into a probability distribution, ensuring that the total296

probabilities across all classes add up to one.297

9. The complete model is built by integrating the base model with ad‐298

ditional layers. For each experiment, a different pre‐trained model299

serves as the foundational model, and identical procedural steps are300

uniformly applied across all seven models. The layer configurations301

of the primary models are illustrated in Figure 4.302
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F I GUR E 4 Layer structure of main models

10. The model is compiled using categorical cross‐entropy as the loss303

function. Its performance is thoroughly evaluated with metrics in‐304

cluding accuracy, precision, recall, F1‐score, and the Area Under the305

Curve of Receiver Operating Characteristic (ROC AUC).306

11. The main model training begins with 100 epochs, during which307

both the training and validation datasets are processed. Throughout308

the process, the loss and metric outcomes are recorded after each309

epoch, creating a detailed training history for analysis.310

12. Once the training is complete, the recorded metrics and loss values311

for each epoch are visualized as learning curves. This visualization is312

highly effective for understanding how the CNN model learns over313

time, showcasing trends in learning curve and helping identify areas314

for potential improvement.315

13. To assess the performance of the trained primary model, it is evalu‐316

ated using the test dataset. The loss function and evaluationmetrics317

applied during training are also utilized in this evaluation. The final318

evaluation results provide a basis for comparing the performance319

of different main models, offering insight into their effectiveness in320

handling the task at hand.321

14. In the final step, a selection of predictions made by the model is322

presented alongside the corresponding input images. These predic‐323

tions are visualized graphically, providing a clear representation of324

themodel’s output for comparisonwith the original images. This pro‐325

vides a clearer insight into the model’s performance and prediction326

accuracy. Examples are illustrated in Figure 5.327

4 EXPERIMENTAL RESULTS328

All experiments in this study were conducted within the Google Co‐329

lab cloud environment. The experiments utilized a Google Colab TPU330

V2 processor, a specialized unit engineered to accelerate the matrix331

computations fundamental to neural network processing.332

Data from various estrus stages of both cats and dogs were cate‐333

gorized into four distinct classes. These classes were randomly divided334

into three subsets: training, validation, and testing. The testing subset335

consisted of unbiased data that was excluded from the training phase,336

ensuring an objective evaluation of the study’s results. In the classi‐337

fication phase, the softmax activation function was employed in the338

final prediction layer. This function calculates one‐dimensional vectors339

where the length of each vector corresponds to the number of classes—340

in this case, four. Each element in the vector represents the probability341

that the input belongs to a specific class, ranging from 0 to 1, with the342

sum of all probabilities equal to one. The highest value in the vector de‐343

termines the predicted class. Thus, the two‐dimensional input images344

are ultimately converted into a single numerical value, class number,345

serving as a label to indicate their respective class.346

A total of ten classification models were developed and analyzed for347

this study. To identify the best‐performing model, six evaluationmetrics348

were utilized: accuracy, cross‐entropy loss, precision, F1 score, recall,349

and ROC AUC.350

The computed metrics for each model are thoroughly evaluated and351

further discussed in detail in the Discussion section.352

Accuracy refers to the proportion of correct predictions out of the353

total predictions made by a classification model. As outlined in the354

equation, it provides insight into how effectively the model assigns355

labels to the input data, as illustrated in Equation 1. This metric is356

particularly significant when comparing the performance of different357

models.358

Accuracy =
TN+ TP

TP+ TN+ FN+ FP
(1)

Precision is the proportion of true positives (TP) accurately identified359

by the classification model out of all positive predictions (TP + FP). It360

specifically reflects the model’s effectiveness in correctly detecting and361

classifying positive instances, as demonstrated in Equation 2.362

Precision =
TP

FP+ TP
(2)

Recall quantifies the fraction of true positives (TP) accurately identi‐363

fied by the classification model out of all actual positives (TP + FN) in364

the dataset, as illustrated in Equation 3.365

Recall =
TP

TP+ FN
(3)

F‐Scores are especially crucial when balancing precision and recall366

metrics is essential. In this context, the F1 score is introduced, rep‐367

resenting the harmonic mean of precision and recall. The F1 score is368

particularly useful for minimizing incorrect predictions and providing a369

balanced assessment of the model’s performance, as shown in Equation370

4.371
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F I GUR E 5 Samples of prediction results

F I GUR E 6 ROC curve and its AUC

F1 =
TP

TP+ 1
2
(FP+ FN)

(4)

The AUC ROC is a vital measure for assessing the effectiveness of a372

classification model. The ROC curve depicts the balance between true373

positive rates and false positive rates, while the AUC quantifies the374

area under this curve, as seen in Figure 6. In contrast to accuracy met‐375

rics, AUC of ROC provides valuable insights into the model’s ability to376

distinguish between positive and negative classes effectively.377

TPR =
TP

TP+ FN
(5)

FPR =
FP

FP+ FN
(6)

Cross‐entropy loss is a logarithmically calculatedmetric that assesses378

the difference between the predicted probability distribution and the379

actual distribution of target classes. It measures how well the predicted380

probabilities align with the true labels by imposing higher penalties381

for incorrect and confident predictions. A lower cross‐entropy loss382

value signifies that the model’s predictions are closer to the true labels,383

indicating better performance and greater accuracy in its predictions.384

Model training is conducted in epochs, with each epoch producing385

metric results that allow us to observe the learning process. Conse‐386

quently, we plotted the learning curves for each model on both the387

training and validation datasets based on these epoch‐wise accuracy388

results, as detailed below.389

The learning curves ofMobileNetV2 demonstrate rapid improvement390

on the training dataset up to approximately 60%, after which progress391

slows significantly. On the validation dataset, performance is inferior,392

plateauing around 80%, as shown in Figure 7. ResNet152V2 exhibits393

learning curves similar to MobileNetV2 but with a slower initial phase394

and slightly better validation performance, reaching nearly 90% accu‐395

racy, as depicted in Figure 7. EfficientNetV2L shows a sharp increase in396

accuracy and is one of the most stable models in terms of curve oscilla‐397

tions, as illustrated in Figure 8. The learning curves of Xception follow398

a trend similar to EfficientNetV2L. However, the validation curves ex‐399

perience more significant downward fluctuations and do not achieve400

accuracy levels close to 100%, as shown in Figure 8. The VGG‐16‐based401

model appears to be the slowest learner, is the onlymodel withmarginal402

oscillations on the training dataset, and its validation accuracy barely403

reaches 80%, as presented in Figure 9. InceptionV3, NasNetLarge, and404

InceptionResNetV2 present roughly similar trends and shapes with mi‐405

nor differences. They exhibit low oscillations on the validation dataset406

and steady‐paced learning on both datasets, with gently curving lines on407

average. Notably, NasNetLarge’s curves reach higher accuracy in earlier408

epochs, as shown in Figures 9 and 10.409

DenseNet‐201’s learning curves show a reasonable increase during410

training. However, the validation curve experiences the most oscilla‐411

tions and only barely reaches 90% accuracy, as illustrated in Figure 11.412

ConvNextSmall achieves the fastest early learning rate during training413

without a doubt but performs poorly on validation, with an upper bound414

near 80%. Consequently, it exhibits the greatest discrepancy between415

training and validation performance, sharing only one common point, as416

depicted in Figure 11.417
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F I GUR E 7 Accuracy trends of the MobileNetV2 and ResNet152V2 models across each training epoch, illustrated through learning curves

F I GUR E 8 Accuracy trends of the EfficientNetV2L and Xception models across each training epoch, illustrated through learning curves

F I GUR E 9 Accuracy trends of the VGG‐16 and InceptionV3 models across each training epoch, illustrated through learning curves

F I GUR E 10 Accuracy trends of theNasNetLarge and InceptionResNetV2models across each training epoch, illustrated through learning curves

F I GUR E 11 Accuracy trends of the DenseNet201 and ConvNeXtSmall models across each training epoch, illustrated through learning curves
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TAB L E 1 Classification Performance Metrics

Base Model Accuracy Loss Precision Recall F1‐Score ROC AUC

MobileNetV2 78.12% 1.09 79.03% 79.16% 79.10% 92.52%

ResNet152V2 91.40% 0.22 93.06% 92.68% 92.87 99.58%

EfficientV2L 94.53% 0.13 93.86% 94.94% 94.40% 99.71%

Xception 97.65% 0.08 98.64% 97.39% 98.01% 99.91%

VGG‐16 87.50% 0.40 87.18% 87.32% 87.25% 97.27%

InceptionV3 93.75% 0.11 94.45% 93.64% 94.04% 99.82%

NasNetLarge 95.31% 0.25 96.59% 94.87% 95.72% 98.78%

InceptionResNetV2 96.09% 0.08 97.33% 94.29% 95.79% 99.88%

DenseNet201 92.30% 0.20 92.68% 92.44% 92.56% 99.75%

ConvNeXtSmall 89.42% 0.38 90.44% 88.11% 89.26% 97.13%

F I GUR E 12 Classification accuracy metrics from the final evaluation are displayed in a bar graph

Overall, with the exceptions noted above, all models’ learning curves418

exhibit certain common behaviors. Specifically, the validation curves are419

consistently more oscillatory and lower in accuracy compared to the420

training curves, which is expected. Both training and validation curves421

naturally display an overall increasing trend on average. Unless stated422

otherwise above, both curves can reach approximately 100% accuracy423

at some point.424

In evaluating the results, all metrics derived from the test dataset425

were carefully analyzed in the study. The calculated metrics provided426

objective performance assessments based on the respective models.427

The Xception model achieved the highest values, with an accuracy of428

97.65%, precision of 98.64%, recall of 97.39%, F1 score of 98.01%, and429

an impressive ROCAUCof 99.91%. In terms of loss, InceptionResNetV2430

produced the lowest value, with a result of 0.08. Overall, the Xception431

model proved to be the most effective, achieving the highest results in432

this study. For a detailed comparison, refer to Table 1 along with Figures,433

12, and 13.434

5 DISCUSSION435

As presented in the preceding section on Experimental Results, each436

pre‐trained model yielded distinct outcomes across various evaluation437

metrics, exhibiting significant disparities. Therefore, it is necessary to438

explicitly articulate the reasons behind these differences.439
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F I GUR E 13 Classification loss metrics from the final evaluation are displayed in a bar graph

The MobileNetV2‐based model achieved the lowest scores across440

all metrics. Given the high resource and time demands of training deep441

learning models, MobileNets are specifically designed to address these442

issues by sacrificing some predictive accuracy. Although MobileNetV2443

is fast, its underperformance is expected, placing it last among the444

selected models with an accuracy of 78%.445

The ResNet152V2 model ranks near the middle, albeit on the lower446

side across all metrics. Despite its moderate placement, an accuracy of447

91.53%, a loss of 0.22, and all other results exceeding 90% indicate that448

it is a successful model for the task overall. However, superior models449

are undeniably present in the experiment.450

EfficientNetV2Lmaintains a position comparable to ResNet152V2 in451

terms of metric rankings, yet it achieves a 3% higher accuracy. While452

a three percent increase might appear modest, it signifies a substan‐453

tial difference when accuracy percentages surpass 90%, where even a454

single percentage point can be impactful. Additionally, EfficientNetV2L455

boasts the second‐highest recall; however, it has lower precision and a456

less favorable balance between precision and recall, as indicated by its457

F1‐score. Nevertheless, with an accuracy of 94.53%, EfficientNetV2L458

demonstrates that its model scaling approach yields successful results459

on this dataset.460

Xception, short for eXtreme Inception, outperforms all other models461

across all metrics, boasting an accuracy of 97.65% and an excellent loss462

of just 0.08. Extending the Inception architecture to its extreme clearly463

represents the most effective approach in this study, particularly when464

compared to InceptionV3 results.465

VGG‐16 is one of the oldermodels, featuring deeper layers compared466

to MobileNetV2. Consequently, it ranked second to last across all met‐467

rics, including an accuracy of 87.5%, except for ROC AUC, where it was468

third to last. This performance is attributable to its outdated architec‐469

ture, especially when contrasted with the more contemporary models470

employed in this study, resulting in an expected outcome.471

The InceptionV3‐based model ranks just below EfficientNetV2L,472

achieving an accuracy of 93.75%. Although its performance in ac‐473

curacy, precision, recall, and F1‐score is positioned near the middle474

compared to its peers, it secures a place within the top three for loss475

and ROC AUC, alongside InceptionResNetV2 and Xception. The vanilla476

Inception architecture exhibits limitations when compared to some non‐477

Inception‐based models. However, it demonstrates significant potential478

when evaluating loss and ROC AUC—metrics that measure the discrep‐479

ancy between predictions and actual results, and the overall quality of480

the predictionmodel, respectively. This potential is validated by the per‐481

formance ofmodified Inceptionmodels: Xception, which is the best, and482

InceptionResNetV2, the second best.483

NasNetLarge, as a hypermodel architecture, delivers strong perfor‐484

mance across key metrics, including accuracy, precision, recall, and485

F1‐score. Despite being the third most accurate model with an accuracy486

of 95.31%, it shows signs of lagging behind in loss and ROC AUC. Nev‐487

ertheless, NasNetLarge demonstrates one of the most refined results488

among model‐building architectures.489

The InceptionResNetV2 model, achieving an accuracy of 96.09%, is490

based on the Inception architecture. While it shares a similar founda‐491

tional structure with Xception, it uniquely integrates ResNet’s residual492

mapping approach, leading to outstanding performance. This excellence493

is demonstrated by its shared first place with Xception in loss, second494

place across all other metrics, and a fourth‐place ranking in recall. As495

previously mentioned, modified Inception models emerge as the top496

performers in this experiment.497
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DenseNet201 is typically a powerful architecture for image classifi‐498

cation tasks; however, in this project, it only secured mediocre rankings,499

falling into the lower half for all metrics except ROC AUC, where it500

ranked fifth. Although an accuracy of 92.3% is commendable, it trails501

behind competing models in this experiment. The dense layer block502

structures inherent to DenseNets resulted in unexpectedly lower rank‐503

ings. Therefore, it can be concluded that DenseNet201 is not the most504

suitable model for classifying the estrus cycle with this dataset.505

ConvNextSmall emerged as another underperforming model, with506

an accuracy of 89.42%. This is particularly notable given its design to507

keep pace with next‐generation deep learning techniques, such as vi‐508

sion transformers. ConvNextSmall typically ranked third to last across509

all metrics. Consequently, similar to DenseNet201, ConvNextSmall is510

outperformed by more suitable candidates for the experimental task at511

hand.512

When examining the learning curves, several key observations513

emerge. First, the learning speed—characterized by a steep increase to514

higher percentages—does not necessarily influence the test results. For515

instance, NasNetLarge exhibits a slower learning rate compared to Ef‐516

ficientNetV2L, yet their outcomes are contrasting. Secondly, validation517

curves offer crucial insights into test performance. Models with valida‐518

tion curves that display fewer oscillations tend to be more successful.519

Additionally, the validation upper bound serves as an indicator of po‐520

tential test results; a higher upper bound is associated with greater521

test accuracy. These patterns are consistently observed across all mod‐522

els, particularly when comparing the top performer, Xception, with the523

lowest performer, MobileNetV2.524

Overall, the experiment can be deemed successful due to the excep‐525

tionally high accuracy results, notably the 97.65% achieved by Xception.526

Excluding three models—one scoring below 80% and two just below527

90%—all other models achieved accuracies above 90%, with some even528

exceeding 95%. By applying contemporary AI technologies to the veteri‐529

nary domain, the determination of the estrus cycle can be significantly530

facilitated.531

6 CONCLUSION532

In this study, images from four different estrus periods of cats and dogs533

were classified using various deep learning models. The accuracy values534

obtainedwere used to compare the performance of eachmodel in terms535

of classification. The results indicate that the Xception model achieved536

the highest accuracy, with a remarkable 97.65%, demonstrating its537

effectiveness in estrus period classification.538

For future research, expanding the dataset with larger and more539

diverse image collections can significantly enhance the generalization540

capability of the models. This can be particularly beneficial by incor‐541

porating images captured under different environmental and lighting542

conditions, as well as including a broader range of cat and dog species.543

Furthermore, applying techniques such asmodel optimization and trans‐544

fer learning could improve model accuracy. Transfer learning, in partic‐545

ular, can accelerate the training process and yield better results, even546

with smaller datasets, by leveraging pre‐trained models. Additionally,547

ensemble learning methods, which combine the strengths of multiple548

models, could potentially achieve even higher accuracy levels. To in‐549

crease the practicality of these methods, future work could focus on550

developingmodels optimized for real‐time classification and tailored for551

mobile devices, facilitating their implementation in clinical applications.552
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