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Abstract

Vaginal cytology is a diagnostic tool for evaluating estrous cycle stages and reproductive health in female dogs and cats. It
involves microscopic examination of vaginal epithelial cells, but subjective interpretation can lead to inconsistencies. This
study explores artificial intelligence (AI), specifically deep learning, to enhance accuracy. A total of 1,096 vaginal smear
samples were collected, stained, digitized, and analyzed using AI. Several pre-trained convolutional neural networks (CNNs),
including MobileNetV2, ResNet152V2, EfficientNetV2L, Xception, VGG-16, InceptionV3, NasNetLarge, InceptionResNetV2,
DenseNet201, and ConvNeXtSmall, were evaluated. The Xception model achieved the highest accuracy at 97.65%. These
findings demonstrate AI’s potential to reduce subjectivity, improve diagnostic consistency, and advance reproductive health

assessments in veterinary medicine.
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1 | INTRODUCTION #

22
Examining vaginal cells under the microscope—commonly referred t&*
as vaginal cytology—offers a straightforward yet valuable tool for evaf*
uating disorders of the reproductive and urinary tracts in both bitche%
and queens (Kustritz, 2020). Used alongside a thorough clinical history®
physical examination, and other diagnostic procedures, this method f&7
cilitates accurate diagnoses and tailored treatments. Because femal&®
dogs experience a prolonged heat phase and their behavioral signs d&°
not always align with the precise timing of ovulation, determining thé®
best day for breeding can be challenging (Linde & Karlssor, 1984). Cor*
sequently, if mating occurs at the wrong time, one might mistakenly?
suspect fertility complications even when there are none (Grundy, Feld
man, & Davidson, 2002; Moxon, Copley, & England, 2010). By assessing*
vaginal epithelial cells in conjunction with other diagnostic measures®
veterinarians can more precisely identify ovulation and optimize thé®
timing for mating. Additionally, vaginal cytology can help ascertain thé’

sexual cycle stage, given in Figure , detect irregularities in the cyclé®
39

40

41

Abbreviations: Al artificial intelligence; AUC, area under the curve; CNN, convqy
lutional neural networks; ROC AUC, area under the curve of receiver operating
characteristic 4

Burak Fatih Yuksel PhD? |
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Vaginal cytology is a diagnostic tool for evaluating estrous cycle stages and reproductive health
in female dogs and cats. It involves microscopic examination of vaginal epithelial cells, but sub-
jective interpretation can lead to inconsistencies. This study explores artificial intelligence (Al),
specifically deep learning, to enhance accuracy. A total of 1,096 vaginal smear samples were col-
lected, stained, digitized, and analyzed using Al. Several pre-trained convolutional neural networks
(CNNSs), including MobileNetV2, ResNet152V2, EfficientNetV2L, Xception, VGG-16, InceptionV3,
NasNetLarge, InceptionResNetV2, DenseNet201, and ConvNeXtSmall, were evaluated. The Xcep-
tion model achieved the highest accuracy at 97.65%. These findings demonstrate Al’s potential to
reduce subjectivity, improve diagnostic consistency, and advance reproductive health assessments

Artificial Intelligence, Deep Learning, Classification, Estrus Cycle, Vaginal Cytology

or lack of ovulation, localize abnormal bleeding or discharge, and diag-
nose issues such as inflammation (e.g., metritis and pyometra), tumors,
or vaginal hyperplasia (Kaymaz, Risvanli, & Koker, 2019).

Vaginal cytology relies on categorizing epithelial cells according to
their morphology to determine the reproductive cycle phase (Johnston.
Kustritz, & Olson, 2001)). Four primary types of epithelial cells are distin-
guished. Parabasal cells, which lie close to the basement membrane, are
small and round, exhibit a prominent nucleus, and have a narrow band of
cytoplasm. These cells are consistently found in canine vaginal samples.
Positioned above the parabasal layer, intermediate cells appear slightly
bigger, with a larger proportion of cytoplasm relative to the nucleus.
Collectively, parabasal and intermediate cells are sometimes grouped
under the label “non-cornified.” As estrogen levels rise, parabasal cells
undergo division, giving rise to superficial cells—often called superficial
intermediate cells—that are large and irregularly shaped, with abun-
dant cytoplasm and a relatively small nucleus. Some superficial cells
lack visible nuclei after staining; these are referred to as non-nucleated
squamous cells. Both superficial cells and non-nucleated squamous
cells are frequently called “cornified.” Other elements typically observed
in vaginal cytology include polymorphonuclear leukocytes (PMNs or
neutrophils), red blood cells (RBCs), and bacteria (Kustritz, 2020).

During anestrus in bitches, the vaginal lining consists mostly of a

thin layer of parabasal and intermediate cells (Post, 1985). As proestrus
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FIGURE 1 Estruscycle

progresses and transitions into estrus, the tissue thickens and accus
mulates more layers to prepare for mating. Early smears taken durings
proestrus often show predominantly intermediate cells with relatively
few parabasal or keratinized cells, and red blood cells appear in substarss
tial numbers. As estrus approaches, however, RBCs typically diminish.
In estrus itself, the proportion of keratinized cells in the smear climbs,
peaking around ovulation as progesterone levels become sufficient fog
ovulation. By then, both red blood cells and leukocytes generally dis-
appear from the sample, and the smear appears cleaner compared tg;
proestrus or metestrus. When metestrus begins, leukocytes return igs
greater numbers, and there is a notable increase in parabasal and iny
termediate cells once again (Moxon et all, 2010). In cats, parabasaly
intermediate, nucleated superficial and non-nucleated superficial cells;
are observed in vaginal cytology. Increased estradiol levels in proestrus,
cause vaginal cornification, leading to morphologic changes in cytologigs
cells. In cats in proestrus, intermediate cells are mostly present, while,
parabasal, neutrophil and cornified cells are present to a lesser extents
In cats, unlike dogs, the peak of vaginal cornification occurs simultaneg
ously with the plasma estradiol peak. In cats in estrus, superficial cells,
are most abundant, followed by cornified, intermediate, neutrophil ands
parabasal cells in decreasing order. In diestrus, neutrophils are observed,
with the majority of parabasal and intermediate cells, while cornified ang,
superficial cells are observed in very small proportions. In anoestrus, im
termediate cells are observed at high rates, while parabasal, superficig),
and neutrophils are observed at low rates (Johnston et al., 2001; Kaymag;
et al,, 2019). With the advancement of technology, various alternativig
diagnostic methods are being developed. In vaginal cytology, subjectives
evaluation of the samples under the microscope may cause differencegs
in interpretation. In order to prevent these subjective evaluations ang;
to make more objective and accurate determinations, computer-aideds
programs and software are used and continue to be developed. Artifiy
cial intelligence, which is a current field of study, is used in different,
techniques and fields (Matias et al., 2021). By uploading and recognizy
ing images, it has been used in the interpretation of colposcopy, cervical
cancers and cervical cytology in humans (Fu et al|, 2022; Holmstroms
et al,, 2021; G. Liu et al|, 2022; Tareef et all, 2017), determining the,
estrous cycle and stages of rodents (Cecen et al!, 2024; Wolcott et alis

2022), and determining the cycle stage with vaginoscopic images (Rajans

/ Diestrus \\\
[ (Metestrus) |
‘\Z5(50-90) day/s/

Proestrus: 0-2 days
Estrus: 2-19 days

Diestrus
Pregnancy
~60 days

Proestrus |
8-10 days | | Pseudo-pregnancy

Diestrus
~40 days

Anestrus
~30-90 days.

Mooloor Harshan, & Gopinathan, 2024). In this study, it was aimed to
help more objective evaluation and diagnosis by determining the cy-
tology images of different cycle stages of cats and dogs using artificial

intelligence.

2 | LITERATURE REVIEW

When studies on determining the stage of the estrous cycle of ani-
mals with cytological images using deep learning methods are examined,
it is possible to say that these methods are much faster than manual
methods. In their 2022 review, Hennessey et al. highlight that the appli-
cation of artificial intelligence (Al) in veterinary medicine remains in its
early stages, with fewer than forty academic studies published to date.
This emerging approach primarily utilizes machine learning techniques
applied to large image datasets for diagnostic purposes. Moreover, fur-
ther advancements in Al have the potential to enhance areas such as
radiology services, workflow optimization, quality control, and image
interpretation (Hennessey, DiFazio, Hennessey, & Cassel, 2022).

Calderén and his team propose to automatically identify six cell types
in vaginal cytology with 91.6% accuracy to determine the estrous cy-
cle of dogs with a Faster R-CNN-based system. The proposed system
reduces the analysis time from approximately 1 hour to a few seconds,
speeding up the diagnostic process and making it more efficient. This
innovative approach aims to increase accuracy by reducing subjective
interpretations in diagnoses and to prevent economic losses (Calderén|
Carrillo, Nakano, Acevedo, & Hernandez, 2020).

The study conducted by Cecen and his teammates examines deep
learning-based YOLOvV5 models to classify the estrous cycle using uter-
ine tissue images taken from female rats. The YOLOv5m model showed
the highest performance with 98.3% accuracy and 98% F1 score. The
results reveal that the proposed model can support expert pathologists
in histological analysis (Cecen et all, 2024)).

In their study, Lodkaew and his colleagues developed a system called
CowXNet to automatically detect estrus behavior in cows on farms.
CowXNet used YOLOV4 and deep learning methods to analyze camera
images and classified the movements of cows with 83% accuracy. This

system aims to replace costly electronic devices and enable farmers to
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detect estrus more efficiently and effectively (Lodkaew, Pasupa, & Lody
2023). 168

In the PhD thesis study conducted by ibrahim Arikan, he aims teo
determine the estrus period in farm animals by detecting mounting bee
havior with deep learning methods. While the ResNet model detected:
mounting behavior with 99% accuracy, XAl (Explainable Artificial Intef=
ligence) techniques such as Grad-CAM and Gradient Inputs were useds
to explain the focal points of the models in the decision-making pro=
cess (the udder and back regions of the cows). The explainability of thes

nn

models was evaluated with "accuracy,” "maximum sensitivity,” and "conrs
plexity” metrics, providing reliable and understandable results (Arikany
2024). 178
Research conducted by Onishi and colleagues points out that ass
sessing the estrous cycle in adult female mammals is a pivotal stejo
in confirming both the safety and the effectiveness of potential thee:
apeutics. Traditional pathology methods, which often rely on expert
assessment, can be time-intensive and prone to variability across difs
ferent observers. In contrast, deep learning-based image analysis offerss
significant benefits in streamlining these evaluations. Their findings irs
dicate that two Al-driven models designed to identify estrous cycles
phases using cervical and vaginal tissue images achieve accuracies coms
parable to those of seasoned pathologists, suggesting that this digitads
approach could expedite the drug research and development pipelines
(Onishi et all, 2022). 190
In Lee’s study, it is emphasized that advancements in artificial intel-
ligence are leading to more accurate outcomes in image classification
tasks. The researchers conducted a comparative analysis of various maz
chine learning algorithms, including support vector machines (SVM),
alongside more advanced deep learning techniques such as convoly;
tional neural networks (CNNs) with varying parameters. These meth-
ods were applied to address the classic “Cats vs. Dogs” classificatioms
problem (Leg, 2021). 104
Haghofer and his colleagues introduce a workflow that integratess
artificial intelligence (Al) and image processing techniques to classifye
lymphoma based on nuclear size—categorized as small, medium, as
large. Their study highlights the effectiveness of modular segmentas
tion models like Stardist for nuclear segmentation, as well as a Unet4d
model trained on labeled nuclear cells from canine lymphoma histen
logical images. Consequently, the proposed workflow achieves classiq
fication accuracies of 92% for canine lymphoma data and 84.21% fas
feline lymphoma data. This system assists pathologists in distinguishings
lymphoma subtypes by analyzing nuclear size (Haghofer et al!, 2023).204
The study conducted by Rajan and his co-researchers presents 2as
contemporary method to determine the phases of the estrous cycle s
female dogs. Features were extracted with models of InceptionV3 and:
ResNet152 and they were optimized with binary gray wolf optimizas
tion (BGWO) and classified with extreme gradient boosting (XGBoosth
algorithm. The results show that the ResNet152 model performed besto
with the XGBoost producing 90.37% accuracy in average (Rajan et al.,
2024).

The team of Wolcott focuses on that the deep learning-based Es-
trousNet algorithm was used to classify the estrous stage, and this
method achieved expert-level accuracy. EstrousNet uses the time di-
mension of the hormone cycle to highlight misclassifications and flag
anestrus stages (e.g., pseudopregnancy), allowing researchers to quickly
assess endocrine status during rodent studies (Wolcott et al!, 2022). Pu
and his colleagues in their study, an automatic EfficientNet model pro-
posed with deep learning techniques to recognize the estrous cycle
of female rats. This model, which provides higher accuracy and effi-
ciency compared to traditional methods, optimizes its performance by
adjusting model, layer and input properties, which are depth, width and
resolution. The model outcome has high accuracy on predicting stages
of the rat estrous cycle, thus increasing the efficiency of experiments
and reducing human errors (Pu, Liu, Zhou, & Xu, 2024).

Numerous studies have focused on using deep learning models to
analyze the estrus cycle, as highlighted in this section. However, this
study is unique in its use of multiple models and a comparative experi-
mental approach, which has not been explored in previous research. By
introducing an original dataset and applying this innovative methodol-
ogy, the study contributes significantly to the literature, offering new
insights and advancing the field of estrus cycle analysis. Furthermore,
the comparison of different models enhances our understanding of their
relative strengths and potential applications, enriching the current body
of knowledge in this area.

3 | METHODOLOGY

3.1 | Dataset
A total of 1096 smear images were collected from dogs and cats with
healthy genital tract and cycle. Samples were obtained from animals in
different phases of the estrous cycle. All samples were collected using
a sterile cotton swab moistened with isotonic serum (Pérez, Rodriguez,
Dorado, & Hidalgo, 2005). The cotton swab collected cells from the
caudodorsal surface of the vagina (Aydin, Sur, Ozaydin, & Dind, 2011)).
Swabs were taken by rolling the swab from the dorsal wall of the vagina,
removed and spread on a glass slide (Davidson, 2015). The smears
were stained using Diff-Quick staining kit (Davidson, 2015; Reckers|
Klopfleisch, Belik, & Arlt, 2022). The smears were taken using a camera-
integrated microscope (Olympus CX23, LCmicro, Olympus Europa SE &
CO. KG, Hamburg, Germany) and digitized, which can be seen in Figure
B

In the dataset, there are four phases of the estrous cycle of cats and
dogs: Anoestrus, Diestrus, Estrus and Proestrus, in Figure E In this study,
an image processing system was developed and it was aimed to estimate
the phase of the estrous cycle of the relevant animal based on an image

given to the system.
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FIGURE 2 Collection of smear images using a camera-assisted microscope.
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FIGURE 3 Sample images from estrus stages as classes

222

3.2 | Model Structure

223

In this experiment, a model is built for the given goal using a pr&*
trained model as its foundation. The selected base models include M&?
bileNetV2, ResNet-152 V2, EfficientNetV2L, Xception, VGG-16, Inceff®
tionV3, NasNet, InceptionResNetV2, DenseNet201, and ConvNext¥’
mall. 228

MobileNets are specifically designed for robust real-time perfo??
mance while minimizing accuracy loss (A. G. Howard et all, 201%°
A. Howard, Zhmoginov, Chen, Sandler, & Zhd, 2018). 21

ResNets employ deep architectures with residual mappings to genéer?

ate reliable predictions (He, Zhang, Ren, & Sun, 2015, 2014). 23
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EfficientNets, derived from MobileNets, achieve greater efficiency by
systematically scaling properties such as model depth, layer width etc.
(Tan & Le, 2019, 2021).

The Xception model builds upon the Inception model but pushes its

design to extremes, earning the name “Extreme Inception” (abbreviated
as Xception) (Chollet, 2016).

VGG models, named after the Visual Geometry Group, feature deep
architectures with small convolutional layers to address challenges
posed by high model depth (Simonyan & Zissermarn, 2014).

Inception models employ a unique layer structure consisting of incep-

tion blocks, which enable parallel computations followed by concatena-
tion (Christian, Vincent, Sergey, Jonathon, & Zbigniew, 2015).
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NasNet (Neural Architecture Search Network) is a model designed
to discover the optimal neural network architecture for a specific task.
It identifies and optimizes the best-performing model by initially evalu-
ating candidates on a smaller subset of the dataset (Zoph, Vasudevan.
Shlens, & Le, 2018).

InceptionResNet models combine the strengths of Inception’s ar-
chitecture with ResNet’s residual mappings, often achieving superior
results compared to either approach individually (Szegedy, loffe, Van-
houcke, & Alemi, 2017).

DenseNet models use densely connected blocks of layers to enhance
feature propagation and achieve high accuracy predictions (Huang, Liul
Van Der Maaten, & Weinberger, 2017).

ConvNext models were developed to modernize convolutional neu-
ral networks in response to the rise of vision transformers. Designed as
next-generation CNNs, ConvNext models come in various sizes, with
larger sizes offering higher accuracy at the cost of reduced efficiency.
ConvNextSmall was selected for this experiment to balance accuracy
and time performance (Z. Liu et al!, 2022).

The experiment is carried out for each pre-trained model. In addition
to retrieving and utilizing the pre-trained models, several crucial steps
are implemented throughout the experiment. The following outlines the
experimental process step by step.

The following algorithm describes the key steps involved in the

process presented in Algoirthm .

1. The dataset is loaded from Google Drive and rescaled to 224x224
size..

2. The dataset of 1,096 images was split into three parts for distinct
functions: 70% was designated for training the model, 20% for vali-
dating the model during the training process, and the final 10% was
reserved as a test set to assess the model’s overall performance.

3. A data augmentation layer is implemented to synthetically expand
the dataset.By utilizing techniques like flipping, rotation, cropping,
and scaling the original collection of 1,096 images can be expanded*
more than tenfold, greatly increasing the variety of the trainirsgs
dataset. 286

4. The dataset images are represented as 1D arrays of RGB pixel values?
each ranging from 0 to 255. To facilitate faster and more efficiedt®
computations, these values are normalized to either the [0,1] &¥
[-1,1] range. The choice of the target range depends on the prepr#?
cessing requirements of the specific pre-trained model being usei!
As a result, an appropriate preprocessing layer is added to ensuré&
compatibility with the model’s input format. 203

5. In this study, transfer learning is utilized by incorporating pre#
trained base models into the program through the TensorFlo%?
library, enabling the application to leverage existing knowledge fét6
enhanced performance. 207

6. Neural network architectures are made up of multiple layers. Durirgs
the training phase, certain layers are kept inactive, or "frozen,” to pré®
serve their pre-trained weights, while the other layers are adjusted?

This strategy, commonly called the freeze-out fine-tuning metho#!
302

Algorithm 1 Experimental program

Fetch the images as dataset
Divide the data into training, validation, and test sets
with approximate proportions of 70%, 20%, and 10%

respectively.

baseModel < get the pretrained model
model < define a model

model.layers < empty layer list
model.layers.insert(inputLayer)
model.layers.insert(dataAugmentationLayer)
model.layers.insert(preprocessLayer)

(
(baseModel)
(
(

globalAveragePoolingLayer)
model.layers.insert(predictionLayer)

model.layers.insert

model.layers.insert

baseModel.trainable < True
fineTuneAt < freeazeout last one third of
layers in the model
for k €{0,...,fineTuneAt} do
baseModel.layers[k|.trainable < False
end for
metrics < [accuracy, loss, precision,
recall, f1Score, roc]
model.compile(metrics)
Fit the model
Plot the learning curves

Produce results of model on test dataset

was utilized in the experiment by immobilizing approximately the
first third of the model’s layers. This approach facilitates concen-
trated training on the active layers while taking advantage of the
existing knowledge within the frozen layers.

7. A pooling layer has been implemented in the model. This layer
utilizes the global average pooling method, which computes the av-
erage value of each feature map. This approach effectively reduces
the dimensionality of the data while retaining its essential features.

8. A prediction layer is integrated into the architecture to generate the
model’s final outputs. To assess the likelihood of input images be-
longing to each class, the softmax activation function is employed.
Softmax is particularly suitable for this task as it transforms the out-
put values into a probability distribution, ensuring that the total
probabilities across all classes add up to one.

9. The complete model is built by integrating the base model with ad-
ditional layers. For each experiment, a different pre-trained model
serves as the foundational model, and identical procedural steps are
uniformly applied across all seven models. The layer configurations
of the primary models are illustrated in Figure @
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FIGURE 4 Layer structure of main models

339

‘ 340

341
342
343
344
345
346
10. The model is compiled using categorical cross-entropy as the loss;

function. Its performance is thoroughly evaluated with metrics igg

cluding accuracy, precision, recall, F1-score, and the Area Under thg,

Curve of Receiver Operating Characteristic (ROC AUC).
. The main model training begins with 100 epochs, during whicl,

350

11
both the training and validation datasets are processed. Throughout,
the process, the loss and metric outcomes are recorded after eadly,
epoch, creating a detailed training history for analysis. 354

12. Once the training is complete, the recorded metrics and loss valugs;
for each epoch are visualized as learning curves. This visualization ig
highly effective for understanding how the CNN model learns ovey,
time, showcasing trends in learning curve and helping identify areas;
for potential improvement.
13. To assess the performance of the trained primary model, it is evalu-
ated using the test dataset. The loss function and evaluation metrigg9
applied during training are also utilized in this evaluation. The ﬁn§16lO
evaluation results provide a basis for comparing the performanc3g1
of different main models, offering insight into their effectiveness i3r612
handling the task at hand.

14. In the final step, a selection of predictions made by the model is

presented alongside the corresponding input images. These predic-

tions are visualized graphically, providing a clear representation 8?3

the model’s output for comparison with the original images. This prgf

vides a clearer insight into the model’s performance and predict‘io3r€;5

accuracy. Examples are illustrated in Figure E

366
367
368
369
370

371

4 | EXPERIMENTAL RESULTS

All experiments in this study were conducted within the Google Co-
lab cloud environment. The experiments utilized a Google Colab TPU
V2 processor, a specialized unit engineered to accelerate the matrix
computations fundamental to neural network processing.

Data from various estrus stages of both cats and dogs were cate-
gorized into four distinct classes. These classes were randomly divided
into three subsets: training, validation, and testing. The testing subset
consisted of unbiased data that was excluded from the training phase,
ensuring an objective evaluation of the study’s results. In the classi-
fication phase, the softmax activation function was employed in the
final prediction layer. This function calculates one-dimensional vectors
where the length of each vector corresponds to the number of classes—
in this case, four. Each element in the vector represents the probability
that the input belongs to a specific class, ranging from O to 1, with the
sum of all probabilities equal to one. The highest value in the vector de-
termines the predicted class. Thus, the two-dimensional input images
are ultimately converted into a single numerical value, class number,
serving as a label to indicate their respective class.

A total of ten classification models were developed and analyzed for
this study. To identify the best-performing model, six evaluation metrics
were utilized: accuracy, cross-entropy loss, precision, F1 score, recall,
and ROC AUC.

The computed metrics for each model are thoroughly evaluated and
further discussed in detail in the Discussion section.

Accuracy refers to the proportion of correct predictions out of the
total predictions made by a classification model. As outlined in the
equation, it provides insight into how effectively the model assigns
labels to the input data, as illustrated in Equation . This metric is
particularly significant when comparing the performance of different

models.

TN + TP )
TP+ TN + FN + FP
Precision is the proportion of true positives (TP) accurately identified

Accuracy =

by the classification model out of all positive predictions (TP + FP). It
specifically reflects the model’s effectiveness in correctly detecting and
classifying positive instances, as demonstrated in Equation E

P
(2)

FP+ TP
Recall quantifies the fraction of true positives (TP) accurately identi-

Precision =

fied by the classification model out of all actual positives (TP + FN) in

the dataset, as illustrated in Equation E

TP
_— 3
TP+ FN @)
F-Scores are especially crucial when balancing precision and recall

Recall =

metrics is essential. In this context, the F1 score is introduced, rep-
resenting the harmonic mean of precision and recall. The F1 score is
particularly useful for minimizing incorrect predictions and providing a
balanced assessment of the model’s performance, as shown in Equation
7l
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Model training is conducted in epochs, with each epoch producing
metric results that allow us to observe the learning process. Conse-
quently, we plotted the learning curves for each model on both the
training and validation datasets based on these epoch-wise accuracy
results, as detailed below.

The learning curves of MobileNetV2 demonstrate rapid improvement
on the training dataset up to approximately 60%, after which progress
slows significantly. On the validation dataset, performance is inferior,
plateauing around 80%, as shown in Figure E ResNet152V2 exhibits
learning curves similar to MobileNetV2 but with a slower initial phase
and slightly better validation performance, reaching nearly 90% accu-
racy, as depicted in Figure . EfficientNetV2L shows a sharp increase in
accuracy and is one of the most stable models in terms of curve oscilla-
tions, as illustrated in Figure E The learning curves of Xception follow
a trend similar to EfficientNetV2L. However, the validation curves ex-
perience more significant downward fluctuations and do not achieve
accuracy levels close to 100%, as shown in Figure E The VGG-16-based
model appears to be the slowest learner, is the only model with marginal
oscillations on the training dataset, and its validation accuracy barely
reaches 80%, as presented in Figure . InceptionV3, NasNetLarge, and
InceptionResNetV2 present roughly similar trends and shapes with mi-
nor differences. They exhibit low oscillations on the validation dataset
and steady-paced learning on both datasets, with gently curving lines on
average. Notably, NasNetLarge's curves reach higher accuracy in earlier
epochs, as shown in Figures E and E

DenseNet-201's learning curves show a reasonable increase during
training. However, the validation curve experiences the most oscilla-
tions and only barely reaches 90% accuracy, as illustrated in Figure @
ConvNextSmall achieves the fastest early learning rate during training
without a doubt but performs poorly on validation, with an upper bound
near 80%. Consequently, it exhibits the greatest discrepancy between
training and validation performance, sharing only one common point, as
depicted in Figure ﬂ
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FIGURE 7 Accuracy trends of the MobileNetV2 and ResNet152V2 models across each training epoch, illustrated through learning curves

FIGURE 8 Accuracy trends of the EfficientNetV2L and Xception models across each training epoch, illustrated through learning curves
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TABLE 1 Classification Performance Metrics
Base Model Accuracy Loss Precision Recall F1-Score ROC AUC
MobileNetV2 78.12% 1.09 79.03% 79.16% 79.10% 92.52%
ResNet152V2 91.40% 0.22 93.06% 92.68% 92.87 99.58%
EfficientV2L 94.53% 0.13 93.86% 94.94% 94.40% 99.71%
Xception 97.65% 0.08 98.64% 97.39% 98.01% 99.91%
VGG-16 87.50% 0.40 87.18% 87.32% 87.25% 97.27%
InceptionV3 93.75% 0.11 94.45% 93.64% 94.04% 99.82%
NasNetLarge 95.31% 0.25 96.59% 94.87% 95.72% 98.78%
InceptionResNetV2 96.09% 0.08 97.33% 94.29% 95.79% 99.88%
DenseNet201 92.30% 0.20 92.68% 92.44% 92.56% 99.75%
ConvNeXtSmall 89.42% 0.38 90.44% 88.11% 89.26% 97.13%
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FIGURE 12 Classification accuracy metrics from the final evaluation are displayed in a bar graph

Overall, with the exceptions noted above, all models’ learning curves:
exhibit certain common behaviors. Specifically, the validation curves are2
consistently more oscillatory and lower in accuracy compared to thes
training curves, which is expected. Both training and validation curves:
naturally display an overall increasing trend on average. Unless stated
otherwise above, both curves can reach approximately 100% accuracy
at some point. 435

In evaluating the results, all metrics derived from the test dataset
were carefully analyzed in the study. The calculated metrics providegs
objective performance assessments based on the respective modelsy
The Xception model achieved the highest values, with an accuracy ofs
97.65%, precision of 98.64%, recall of 97.39%, F1 score of 98.01%, angy
an impressive ROC AUC of 99.91%. In terms of loss, InceptionResNetV2

produced the lowest value, with a result of 0.08. Overall, the Xception
model proved to be the most effective, achieving the highest results in

this study. For a detailed comparison, refer to Table flf along with Figures,

2, and 3.

5 | DISCUSSION

As presented in the preceding section on Experimental Results, each
pre-trained model yielded distinct outcomes across various evaluation
metrics, exhibiting significant disparities. Therefore, it is necessary to
explicitly articulate the reasons behind these differences.



440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

462

463

464

465

466

467

468

Deep Learning-Assisted Vaginal Cytology for Estrus Classification in Dogs and Cats

11

1,20

1,00

0,80

0,60

0,40

0,20

0,00

Loss

u MobileNetv2 M ResNet152V2

M InceptionV3 W NasNetlarge

Efficientv2L
M InceptionResNetV2 B DenseNet201

Xception BVGG-16

B ConvNeXtSmall

FIGURE 13 Classification loss metrics from the final evaluation are displayed in a bar graph

The MobileNetV2-based model achieved the lowest scores across
all metrics. Given the high resource and time demands of training deeo
learning models, MobileNets are specifically designed to address these:
issues by sacrificing some predictive accuracy. Although MobileNetVi2»
is fast, its underperformance is expected, placing it last among thes
selected models with an accuracy of 78%. 474

The ResNet152V2 model ranks near the middle, albeit on the lowers
side across all metrics. Despite its moderate placement, an accuracy ofs
91.53%, a loss of 0.22, and all other results exceeding 90% indicate thatr
it is a successful model for the task overall. However, superior modelss
are undeniably present in the experiment. 479

EfficientNetV2L maintains a position comparable to ResNet152V2 im0
terms of metric rankings, yet it achieves a 3% higher accuracy. While:
a three percent increase might appear modest, it signifies a substam2
tial difference when accuracy percentages surpass 90%, where evenasas
single percentage point can be impactful. Additionally, EfficientNetV2ka
boasts the second-highest recall; however, it has lower precision andsas
less favorable balance between precision and recall, as indicated by itss
F1-score. Nevertheless, with an accuracy of 94.53%, EfficientNetV2ks
demonstrates that its model scaling approach yields successful resultss
on this dataset. 489

Xception, short for eXtreme Inception, outperforms all other modelso
across all metrics, boasting an accuracy of 97.65% and an excellent loss:
of just 0.08. Extending the Inception architecture to its extreme clearly:
represents the most effective approach in this study, particularly wheias
compared to InceptionV3 results. 494

VGG-16is one of the older models, featuring deeper layers compareds
to MobileNetV2. Consequently, it ranked second to last across all mets

rics, including an accuracy of 87.5%, except for ROC AUC, where it wasr

third to last. This performance is attributable to its outdated architec-
ture, especially when contrasted with the more contemporary models
employed in this study, resulting in an expected outcome.

The InceptionV3-based model ranks just below EfficientNetV2L,
achieving an accuracy of 93.75%. Although its performance in ac-
curacy, precision, recall, and F1-score is positioned near the middle
compared to its peers, it secures a place within the top three for loss
and ROC AUC, alongside InceptionResNetV2 and Xception. The vanilla
Inception architecture exhibits limitations when compared to some non-
Inception-based models. However, it demonstrates significant potential
when evaluating loss and ROC AUC—metrics that measure the discrep-
ancy between predictions and actual results, and the overall quality of
the prediction model, respectively. This potential is validated by the per-
formance of modified Inception models: Xception, which is the best, and
InceptionResNetV2, the second best.

NasNetLarge, as a hypermodel architecture, delivers strong perfor-
mance across key metrics, including accuracy, precision, recall, and
F1-score. Despite being the third most accurate model with an accuracy
of 95.31%, it shows signs of lagging behind in loss and ROC AUC. Nev-
ertheless, NasNetLarge demonstrates one of the most refined results
among model-building architectures.

The InceptionResNetV2 model, achieving an accuracy of 96.09%, is
based on the Inception architecture. While it shares a similar founda-
tional structure with Xception, it uniquely integrates ResNet’s residual
mapping approach, leading to outstanding performance. This excellence
is demonstrated by its shared first place with Xception in loss, second
place across all other metrics, and a fourth-place ranking in recall. As
previously mentioned, modified Inception models emerge as the top

performers in this experiment.
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DenseNet201 is typically a powerful architecture for image classifis
cation tasks; however, in this project, it only secured mediocre rankingss
falling into the lower half for all metrics except ROC AUC, where it
ranked fifth. Although an accuracy of 92.3% is commendable, it trais:
behind competing models in this experiment. The dense layer blocks
structures inherent to DenseNets resulted in unexpectedly lower ranks
ings. Therefore, it can be concluded that DenseNet201 is not the mosto
suitable model for classifying the estrus cycle with this dataset. 551

ConvNextSmall emerged as another underperforming model, witls.
an accuracy of 89.42%. This is particularly notable given its design to
keep pace with next-generation deep learning techniques, such as v#3
sion transformers. ConvNextSmall typically ranked third to last across
all metrics. Consequently, similar to DenseNet201, ConvNextSmall 85
outperformed by more suitable candidates for the experimental task &%
hand. 557

When examining the learning curves, several key observatiors
emerge. First, the learning speed—characterized by a steep increase t&°
higher percentages—does not necessarily influence the test results. Fé®
instance, NasNetLarge exhibits a slower learning rate compared to Ef-
ficientNetV2L, yet their outcomes are contrasting. Secondly, validatioR"
curves offer crucial insights into test performance. Models with valid%?
tion curves that display fewer oscillations tend to be more successful.
Additionally, the validation upper bound serves as an indicator of po-
tential test results; a higher upper bound is associated with greatét
test accuracy. These patterns are consistently observed across all mod-
els, particularly when comparing the top performer, Xception, with thé&*
lowest performer, MobileNetV2. 565

Overall, the experiment can be deemed successful due to the exceff®
tionally high accuracy results, notably the 97.65% achieved by Xceptioti’
Excluding three models—one scoring below 80% and two just beloW?
90%—all other models achieved accuracies above 90%, with some eveff’
exceeding 95%. By applying contemporary Al technologies to the veter{®
nary domain, the determination of the estrus cycle can be significanti{*

facilitated. 572
573

574

6 | CONCLUSION i

576

In this study, images from four different estrus periods of cats and dog§’
were classified using various deep learning models. The accuracy valué®®
obtained were used to compare the performance of each model in term&
of classification. The results indicate that the Xception model achieved
the highest accuracy, with a remarkable 97.65%, demonstrating it&
effectiveness in estrus period classification. %82

For future research, expanding the dataset with larger and mor&
diverse image collections can significantly enhance the generalizatioR’
capability of the models. This can be particularly beneficial by incof®
porating images captured under different environmental and lighting’

conditions, as well as including a broader range of cat and dog speci¢’
588

589

590

Furthermore, applying techniques such as model optimization and trans-
fer learning could improve model accuracy. Transfer learning, in partic-
ular, can accelerate the training process and yield better results, even
with smaller datasets, by leveraging pre-trained models. Additionally,
ensemble learning methods, which combine the strengths of multiple
models, could potentially achieve even higher accuracy levels. To in-
crease the practicality of these methods, future work could focus on
developing models optimized for real-time classification and tailored for

mobile devices, facilitating their implementation in clinical applications.
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